Component | Use | Quantity | Catalog # |
Anti-Bovine IL-13 Polyclonal Antibody | Capture Antibody | 100 µg X 2 | PB0120B-100 |
Biotinylated Anti-Bovine IL-13 Polyclonal Antibody | Detection Antibody | 50 µg | PBB0153B-050 |
Bovine IL-13 Recombinant Protein | Standard | 5 µg | RP0002B-005 |
The Bovine IL-13 Do-It-Yourself ELISA contains capture antibody, recombinant protein standard, and detection antibody for development of a Bovine IL-13 ELISA. The antibodies have been determined to function in an ELISA with the standard provided. Optimal buffers, concentrations, incubation times, incubation temperatures, and methods for the ELISA have not been determined. A working knowledge of ELISA is strongly recommended. The quantities of components provided are not matched. Components may also be purchased separately.
The Bovine IL-13 Do-It-Yourself ELISA can also be used to measure Water Buffalo, and Zebu IL-13.
Interleukin 13 (IL-13) is secreted by many cell types, but especially T helper type 2 (Th2) cells. IL-13 is an important mediator of allergic inflammation and disease. In addition to effects on immune cells, IL-13 is implicated as a central mediator of the physiologic changes induced by allergic inflammation in many tissues. The functions of IL-13 overlap considerably with those of IL-4, especially with regard to changes induced on hematopoietic cells, but these effects are probably less important given the more potent role of IL-4. Thus, although IL-13 can induce immunoglobulin E (IgE) secretion from activated human B cells, deletion of IL-13 from mice does not markedly affect either Th2 cell development or antigen-specific IgE responses induced by potent allergens. In comparison, deletion of IL-4 abrogates these responses. Thus, rather than a lymphoid cytokine, IL-13 acts more prominently as a molecular bridge linking allergic inflammatory cells to the non-immune cells in contact with them, thereby altering physiological function.
For additional tips and techniques to ensure a successful ELISA, check out our ELISA Technical Guide.
Alternate Names - IL13, IL-13, P600, interleukin 13
The chronic stages of bovine Fasciola hepatica are dominated by CD4 T-cell exhaustion
Sachdev D, Gough KC, Flynn RJ.
J Immunol. 2014 Jul 15;193(2):597-609
Applications: Bovine IL-2 was used to stimulate cells. Bovine IL-2 and IL-13 were measure in cell culture supernatants by ELISA.
Fasciola hepatica infection of ruminants leads to non-resolving chronic infection, as patency develops, there is switching to a TGF-β and IL-10 led response. Here, we explore the responses of CD4 T-cells within the major draining lymph nodes. We found minimal expression of Foxp3 within CD4 cells but elevated levels within the γδ (WC1+) population. There is a strong T-cell-intrinsic exhaustion phenotype within the hepatic lymph node (HLN) characterized by a lack of antigen-specific proliferation and cytokine secretion. CD4 T-cells recovered from the HLN had high levels of PD-1 expression and low levels of IL-2 secretion. Exogenous IL-2 partially rescued this defect; when combined with neutralization of IL-10 and TGF-β, full restoration of proliferation, and cytokine production was achieved. Moreover, there is a clear uncoupling of the mechanisms that facilitate this regulation with parasite-specific proliferation and cytokine secretion being governed by independent means. These data would suggest that there is a CD4 T-cell-intrinsic regulation in place early in chronic infection, potentially leading to failure in resistance to reinfection.
Dynamics of IL-4 and IL-13 expression in the airways of sheep following allergen challenge.
Liravi B, Piedrafita D, Nguyen G, Bischof RJ.
BMC Pulm Med. 2015 Sep 11;15:101. doi: 10.1186/s12890-015-0097-9.
Applications: Measurement of ovine IL-13 in cell culture supernatants by ELISA
Background: IL-4 and IL-13 play a critical yet poorly understood role in orchestrating the recruitment and activation of effector cells of the asthmatic response and driving the pathophysiology of allergic asthma. The house dust mite (HDM) sheep asthma model displays many features of the human condition and is an ideal model to further elucidate the involvement of these critical Th2 cytokines. We hypothesized that airway exposure to HDM allergen would induce or elevate the expression profile of IL-4 and IL-13 during the allergic airway response in this large animal model of asthma.
Methods: Bronchoalveolar lavage (BAL) samples were collected from saline- and house dust mite (HDM)- challenged lung lobes of sensitized sheep from 0 to 48 h post-challenge. BAL cytokines (IL-4, IL-13, IL-6, IL-10, TNF-α) were each measured by ELISA. IL-4 and IL-13 expression was assessed in BAL leukocytes by flow cytometry and in airway tissue sections by immunohistology.
Results: IL-4 and IL-13 were increased in BAL samples following airway allergen challenge. HDM challenge resulted in a significant increase in BAL IL-4 levels at 4 h compared to saline-challenged airways, while BAL IL-13 levels were elevated at all time-points after allergen challenge. IL-6 levels were maintained following HDM challenge but declined after saline challenge, while HDM administration resulted in an acute elevation in IL-10 at 4 h but no change in TNF-α levels over time. Lymphocytes were the main early source of IL-4, with IL-4 release by alveolar macrophages (AMs) prominent from 24 h post-allergen challenge. IL-13 producing AMs were increased at 4 and 24 h following HDM compared to saline challenge, and tissue staining provided evidence of IL-13 expression in airway epithelium as well as immune cells in airway tissue.
Conclusion: In a sheep model of allergic asthma, airway inflammation is accompanied by the temporal release of key cytokines following allergen exposure that primarily reflects the Th2-driven nature of the immune response in asthma. The present study demonstrates for the first time the involvement of IL-4 and IL-13 in a relevant large animal model of allergic airways disease.
Please note that Cookies and JavaScript are required for you to view this website.
Check if you have Cookies and JavaScript enabled in your browser