Bulk quantities of Swine IL-6 protein are available.
Please contact us for pricing.
Molecular Weight (calculated) - 20.9kDa
Amino Acid Sequence - GRLEEDAKGD ATSDKMLFTS PDKTEELIKY ILGKISAMRK EMCEKYEKCE NSKEVLAENN LNLPKMAEKD GCFQSGFNQE TCLMRITTGL VEFQIYLDYL QKEYESNKGN VEAVQISTKA LIQTLRQKGK NPDKATTPNP TTNAGLLDKL QSQNEWMKNT KIILILRSLE DFLQFSLRAI RIM (183)
Gene ID - 399500
Homology Across Species
Sus scrofa (pig) IL-6 – 100%
More - https://blast.ncbi.nlm.nih.gov/
Endotoxin - Naturally endotoxin-free
Cell Culture, ELISA Standard, Western Blot Control
Interleukin-6 (IL-6) is an interleukin that acts as both a pro-inflammatory and anti-inflammatory cytokine. It is secreted by T cells and macrophages to stimulate immune response to trauma, especially burns or other tissue damage leading to inflammation. IL-6 is also produced from muscle, and is elevated in response to muscle contraction. It is significantly elevated with exercise, and precedes the appearance of other cytokines in the circulation. Osteoblasts secrete IL-6 to stimulate osteoclast formation. Smooth muscle cells in the tunica media of many blood vessels also produce IL-6 as a pro-inflammatory cytokine. The role of IL-6 as an anti-inflammatory cytokine is mediated through its inhibitory effects on TNF-alpha and IL-1, and activation of IL-1ra and IL-10.
Alternate Names - IL6, BSF2, HGF, HSF, IFNB2, IL-6, BSF-2, CDF, IFN-beta-2, interleukin 6
Generation of human endothelium in pig embryos deficient in ETV2.
Das S, Koyano-Nakagawa N, Gafni O, Maeng G, Singh BN, Rasmussen T, Pan X, Choi KD, Mickelson D, Gong W, Pota P, Weaver CV, Kren S, Hanna JH, Yannopoulos D, Garry MG, Garry DJ.
Nat Biotechnol. 2020 Mar;38(3):297-302. doi: 10.1038/s41587-019-0373-y. Epub 2020 Feb 24.
Applications: The proteins were used in a hematopoietic assay which used cells from embryoid bodies.
The scarcity of donor organs may be addressed in the future by using pigs to grow humanized organs with lower potential for immunological rejection after transplantation in humans. Previous studies have demonstrated that interspecies complementation of rodent blastocysts lacking a developmental regulatory gene can generate xenogeneic pancreas and kidney1,2. However, such organs contain host endothelium, a source of immune rejection. We used gene editing and somatic cell nuclear transfer to engineer porcine embryos deficient in ETV2, a master regulator of hematoendothelial lineages3-7. ETV2-null pig embryos lacked hematoendothelial lineages and were embryonic lethal. Blastocyst complementation with wild-type porcine blastomeres generated viable chimeric embryos whose hematoendothelial cells were entirely donor-derived. ETV2-null blastocysts were injected with human induced pluripotent stem cells (hiPSCs) or hiPSCs overexpressing the antiapoptotic factor BCL2, transferred to synchronized gilts and analyzed between embryonic day 17 and embryonic day 18. In these embryos, all endothelial cells were of human origin.
Please note that Cookies and JavaScript are required for you to view this website.
Check if you have Cookies and JavaScript enabled in your browser